Machine Learning Fundamentals

edX Machine Learning Fundamentals

Platform
edX
Provider
University of California, San Diego
Effort
8 to 10 hours per week
Length
10 weeks
Language
English
Credentials
Paid Certificate Available
Part of
Course Link
Overview
Do you want to build systems that learn from experience? Or exploit data to create simple predictive models of the world?

In this course, part of the Data Science MicroMasters program, you will learn a variety of supervised and unsupervised learning algorithms, and the theory behind those algorithms.

Using real-world case studies, you will learn how to classify images, identify salient topics in a corpus of documents, partition people according to personality profiles, and automatically capture the semantic structure of words and use it to categorize documents.

Armed with the knowledge from this course, you will be able to analyze many different types of data and to build descriptive and predictive models.

All programming examples and assignments will be in Python, using Jupyter notebooks.

What You Will Learn
  • Classification, regression, and conditional probability estimation
  • Generative and discriminative models
  • Linear models and extensions to nonlinearity using kernel methods
  • Ensemble methods: boosting, bagging, random forests
  • Representation learning: clustering, dimensionality reduction, autoencoders, deep nets

Taught by
Sanjoy Dasgupta
Author
edX
Views
689
First release
Last update
Rating
0.00 star(s) 0 ratings
Top